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Abstract

In this paper, we present an open architecture that en-
ables the coexistence of and the collaboration between dif-
ferent and heterogeneous clinical decision support models.
Clinical decision support can be (and has been) built start-
ing from complementary knowledge representation models,
for instance rule-based representations or workflow mod-
els to mention just a few. Each model can contribute to the
quality and effectiveness of an overall clinical decision sup-
port system. Our architecture, Arriclides, enables the inte-
gration of a set of representative and quite different models.
An evaluation of our prototype implementation shows that
such an integration has been achieved while preserving per-
formance and scalability.

1 Introduction

Clinical decision support systems can aid care providers
in optimally diagnosing and treating patients. Guidelines
that support care providers in performing their tasks must be
defined in a computer-interpretable way to provide patient-
specific advice during the clinical encounter. Different
types of clinical knowledge models have been developed
in the past for expressing clinical knowledge.

This paper presents an open architecture for clinical deci-
sion support that enables the coexistence and collaboration
between different and heterogeneous clinical decision sup-
port models. This allows clinical experts to define clinical
knowledge using the most suitable model. Specialized mod-
els also allow the use of constructs that are closely related to
a certain type of knowledge or decision support: this makes
decision support systems easier to use and understand.

The Arriclides architecture does not only allow the com-
bination of different clinical knowledge models; it also of-
fers generic support for a lot of non-functional requirements
such as scalability, performance and integration. As a re-
sult, new knowledge models can be included more easily
into the architecture because implementers can focus on the

core syntax and semantics of their model. The result is a
decision support system that is extensible, allowing clini-
cal institutions to gradually include new knowledge models
without having to migrate existing knowledge or to redo the
integration.

This paper is structured as follows. After introducing
clinical decision support in section 2, section 3 describes
the different clinical knowledge models that are supported
by the Arriclides architecture. The high-level architecture
itself is described in section 4. The architecture of the ex-
ecution environment and the rule-based processing unit are
described in more detail in section 5 and 6 respectively. A
prototype implementation is presented and evaluated in sec-
tion 7. Related work is discussed in section 8; we state our
conclusions in section 9.

2 C(linical decision support

Clinical practice guidelines (CPGs) are a powerful
method for improving the standardization and the quality
of medical care [5]. The purpose of such guidelines is
to support care providers in diagnosing or treating prob-
lems. CPGs describe the interaction between a patient, care
providers and the environment in light of specific clinical
circumstances. CPGs are tools for encouraging best prac-
tices in clinical care; they contribute to improving safety,
quality and cost effectiveness. Professional organizations,
government agencies and healthcare institutions have pub-
lished a plethora of clinical guidelines.

Care providers rarely have the time to keep up with
all state-of-the-art guidelines.  Systems aiding physi-
cians in following particular guidelines are called clin-
ical decision support systems (CDSSs). Studies have
shown that guidelines best affect clinician behavior if
they deliver patient-specific advice during the clinical en-
counter [13]. For guidelines to be delivered at the point
of care through CDSSs, they must be represented in a
computer-interpretable format to enables automatic infer-
ence based on available patient data. However, this is far
from the only requirement for an effective CDSS.



We have defined a set of core requirements that must
be met by CDSSs. (A similar set of requirements for a
sharable guideline representation format has been suggested
by Boxwala et al. [1]). We briefly explain the rationale for
these requirements, as they have been the main drivers while
creating our architecture.

e Knowledge must be represented in a human-
understandable but computer-interpretable manner.

e A clinical decision support architecture should support
the entire life cycle of guidelines [2], including steps
like authoring, dissemination, application and evalua-
tion.

e A clinical decision support architecture should support
different types of knowledge: clinical knowledge can
be divided into different types (a) based on the stage of
the care process it is related to (e.g. diagnostic, treat-
ment, prognosis), and (b) based on the medical domain
it is used in. These are but two examples.

e A clinical decision support architecture should support
different types of decision support. A decision sup-
port system can be reactive, proactive or retrospective
and can manifest itself in a number of ways, e.g. as
documentation, alerts and reminders, diagnostic assis-
tance, therapy critiquing and planning, prescribing as-
sistance, reasoning, etc.

e The clinical knowledge models must offer expressive
power to allow the definition of all kinds of knowledge
in an unambiguous way. This is the most optimal way
to tackle complexity, for example by using constructs
that are closely related to problem domain.

e The clinical decision support architecture should be
manageable, meaning that the configuration and ad-
ministration should be similar for all different types of
knowledge and support.

e The clinical decision support system must be inte-
grated with existing data repositories, to be able to au-
tomatically provide patient-specific advice.

e The clinical decision support architecture should be
extensible as research about clinical knowledge mod-
els is still continuing and new standards for represent-
ing patient data or for interacting with existing clinical
services might still arise. The inclusion of new process
models and/or standards must be straightforward.

e The clinical decision support architecture should sup-
port traceability: care providers should always be
capable of requesting why certain recommendations

were made by the decision support system. They al-
ways remain in charge, because they can reject or over-
ride recommendations. All information about these
recommendations should be stored so that this infor-
mation can be used for evaluation.

e Clinical knowledge should be shareable between dif-
ferent organizations. Local adaptation of this knowl-
edge to compensate for variations in practice settings,
availability of equipment and medication, local poli-
cies, etc. should be supported as well.

e A clinical decision support architecture should enable
portability in different clinical settings, on different
platforms using different implementations, etc.

Notice that these core requirements can be classified into a
group that is focused on the knowledge models themselves,
and a group that addresses the key properties of the overall
architecture.

Besides these core requirements, a clinical decision sup-
port system has to address additional requirements that are
necessary for successful deployment and exploitation of the
decision support applications, such as scalability, perfor-
mance, security, reliability, etc.

The next section focuses on the knowledge models that
are used to encode and represent clinical knowledge. This
will on the one hand further exemplify the problem domain;
on the other hand this will also illustrate some of the above
mentioned core requirements, especially those that charac-
terize the knowledge models that must be expressive, di-
verse and manageable.

3 Clinical knowledge models

In the last decade, several groups have defined models
for representing computer-interpretable guidelines (CIGs)
(Arden Syntax, Asbru, EON, GLIF, GUIDE, PRESTIGE,
PRODIGY, PROforma, SAGE, etc.) [14, 15]. A differ-
ent approach, based on their specific interest and expertise,
has resulted in different clinical knowledge models (also
called process models). Since much effort goes into creat-
ing guidelines in a computer-interpretable format, it is desir-
able that different medical institutions and software systems
can share them, explaining the need for standardized clini-
cal knowledge models. Several comparison studies [14, 15]
have identified similarities and differences between these
different clinical knowledge models. Attempts to create one
standardized representation format have not succeeded so
far.

While one model might be the most appropriate candi-
date for modeling a certain type of clinical knowledge in a
specific setting, using it to encode a totally different type of



decision support might be difficult without making the re-
sulting knowledge too complex and hard to understand. For
example, because the decision process when diagnosing pa-
tients is often less predictable than when treating patients
that have already been diagnosed with a particular disease,
different building blocks should be offered to clinical ex-
perts encoding this knowledge in a computer-interpretable
form. By using constructs that are closely related to the
problem domain, the useability of a clinical model for en-
coding a certain type of clinical knowledge can be greatly
increased. Domain experts can more easily understand a
certain knowledge model if the building blocks that should
be used are closely related to the problem at hand. This
usually leads to higher productivity, quality and maintain-
ability.

Therefore, we believe that having a limited set of het-
erogenous knowledge models, each used for modeling a
certain type of clinical knowledge or decision support,
might be the best way to keep the complexity of the clin-
ical knowledge under control. Each process model could be
seen as a domain-specific language targeted to a particular
type of decision support. By allowing the coexistence or
even interaction between different process models, clinical
experts can choose the most suitable model when encoding
a certain type of knowledge in a specific setting.

In our current prototype implementation we support four
process models: clinical workflow, clinical pathways, vali-
dation rules and PROforma. We selected these because we
believe they can be seen as representatives for some impor-
tant types of clinical decision support. Clinical workflow
can be used to control the execution of low-level clinical
protocols. Clinical pathways allow the description of the
possibly long-term treatment of diseases, across the bound-
aries of a single clinical institution. Validation rules allow
the use of rule-based, declarative knowledge. And finally,
by also including an existing process model like PROforma,
we prove that clinical institutions who have already invested
in a particular knowledge model can integrate their existing
knowledge while at the same time opening up their clinical
decision support system to other knowledge models.

Although we believe that these four models already rep-
resent a large part of the different clinical knowledge mod-
els currently in use, we do not claim that we support all
types of clinical knowledge and decision support. We be-
lieve that other models might be required in order to sup-
port other types like diagnostic assistance and reasoning.
That is why extensibility of the clinical knowledge models
supported by our architecture is of the utmost importance.

3.1 Clinical workflow

Care protocols can be seen as a sequence of nursing tasks
that are related to each other and where the choice of which
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Figure 1. A simple clinical workflow example:
IV Protocol

task to perform next might be influenced by the results of
previous tasks. These kind of protocols can best be designed
using clinical workflow. Workflow systems are already be-
ing used extensively in a lot of different sectors. Workflow
processes are modeled using flow charts where each task is
represented as a node. Nodes can be linked and there is sup-
port for parallelism, synchronization, choice, cycling, etc.

Our clinical workflow model is an extension of a generic
workflow model, improved for use in a clinical context. For
example, there is support for patient states, deviation from
the proposed flow, etc. We support a large part of the work-
flow patterns as defined by van der Aalst [19], and our work-
flow model can be extended to support new types of nodes.

Figure 1 is an example of a protocol to prevent intra-
venous phlebitis, which is inflammation of a vein due to the
presence of an intravenous catheter (IV). After inserting the
IV, the patient is checked regularly for signs of inflamma-
tion, so that the IV can be removed and reinserted if neces-
sary.

3.2 Clinical pathways

Clinical pathways (CPs) are multidisciplinary plans of
best clinical practice for specified groups of patients with a
particular diagnosis that aid the coordination and delivery
of high quality care. These clinical pathways may extend to
other healthcare facilities and may even span a lifetime of
care in chronic diseases. A patient-centric, process-oriented
approach to healthcare is expected not only to improve the
quality and safety of care, but will also enhance the cost effi-
ciency because a better planning will eliminate unnecessary
wait periods, sub-optimal resource utilization and avoidable
duplication of tests.

Most clinical pathways defined nowadays are in a textual
form. The format varies from a pure textual description of
the best practices, to time-task charts where the columns
represent the different time periods and the cells contain
the tasks that should be executed at those points in time,
grouped into different categories (e.g. nursing, kinesither-
apy, diet, etc.).

Our clinical pathway model allows the specification
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Figure 2. Part of a clinical pathway for the
treatment of gastroenteritis

of clinical pathways using a computer-interpretable time-
task matrix. Clinical pathways are divided into different
episodes, and contain all the tasks that should be performed
during that episode. Goals and patient outcomes can be
linked to these episodes. The model also offers advanced
support for planning (using time constraints), financial man-
agement and variance analysis.

Figure 2 shows a part of the clinical pathway for the
treatment of gastroenteritis. The two columns represent the
first two days of the treatment. All tasks that must be per-
formed on these days are shown in the appropriate category.
A condition is associated with a task if that task should only
be recommended under certain circumstances (e.g. a blood
culture on day one is only recommended if the temperature
of the patient is larger than or equal to 38.5°C).

3.3 Validation rules

Care providers have to fill in a lot of forms during the
treatment of patients, and since every mistake in this con-
text can be life-threatening, all input should be validated.
We present a rule-based model for validation, where clinical
experts can declaratively define validation rules, using a nat-
ural language syntax. Whenever abnormalities are detected,
different types of alerts and reminders could be used to in-
form the appropriate care provider(s). We support both spe-
cific and generic validation rules, where the specific rules
are used for validating the input of one specific form only
and generic can be used for validating data coming from all
kinds of sources.

Figure 3 shows an example of a generic validation rule
that is used to prevent X-ray scans on pregnant females to
avoid exposing the baby to radiation. The care provider is
suggested to use an ultrasound or MRI instead. This valida-
tion rule consists of three conditions and one action. Note
that the doctor can ignore this warning (but could be forced
to clarify his decision) if he believes the X-ray is necessary
anyway.

If
the patient's gender is ; Female
and the patient is pregnant

and ordering © xray scan

Then

Alert the care provider :
Pregnant females should not receive an X-ray scan.

Figure 3. A sample validation rule for X-ray
scans

3.4 PROforma

To prove that our architecture supports the inclusion
of existing clinical knowledge models, we added support
for PROforma [6], a clinical knowledge model developed
at Cancer Research UK. PROforma uses constraint satis-
faction graphs for specifying clinical guidelines. This is
similar to the flow charts used in clinical workflow.

It is important to know that it must be relatively easy
to combine these models such that clinical experts can
choose the most appropriate model for representing their
clinical knowledge. For example, the clinical pathway
model can include validation rules for validating user input
and clinical workflow for sequencing certain tasks within
one episode.

Although there exist many approaches for representing
clinical knowledge, the design and implementation of good
and useful decision support systems that will last and evolve
are still active areas of research [16]. In the next sections,
we present Arriclides, an open architecture supporting the
integration of different knowledge models into on clinical
decision support system.

4 High-level architecture

The Arriclides architecture offers support for the full life
cycle of clinical knowledge models, from authoring and dis-
semination to local adaptation, usage and evaluation. We
provide an architecture that allows the specification, distri-
bution, execution and analysis of knowledge. This enables
the use of clinical knowledge models in providing clinical
decision support to care providers.

This high-level architecture is similar to some existing
propositions in the domain of clinical decision support and
could be seen as a reference architecture. The four most im-
portant components in the high-level architecture are shown
in Figure 4:
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Figure 4. High-level architecture

e Clinical Knowledge Constructor: allows clinical ex-
perts to create new clinical knowledge using any of the
supported knowledge models. It supports validation,
simulation, etc.

e Clinical Knowledge Repository: All clinical knowl-
edge is stored in a repository. It supports distribution,
versioning, local adaptation, etc.

e Execution Environment: Decision support must be
integrated into the existing runtime environment used
by care providers when treating patients. This ex-
isting infrastructure could already contain compo-
nents like an order entry management system, an
electronic medical record (EMR), a patient admis-
sions/discharge/transfer (ADT) system, etc. The deci-
sion support execution environment must be integrated
ensuring it is invoked whenever decision support is
necessary and it should have access to existing ser-
vices and data repositories. The graphical user inter-
face (GUI) of the clinical application that is used by
the care providers typically needs to be extended as
well.

e Clinical Knowledge Information Manager: Infor-
mation collected during the execution of decision sup-
port processes can be analyzed (typically off-line) and
possibly used for improving existing processes.

For the remainder of this paper, we focus on the archi-
tecture of the execution environment, since it is the most
challenging, innovative and complex part of the Arriclides
architecture.

5 Execution Environment

Patient-specific decision support can be achieved by cre-
ating a decision support engine that is capable of executing
a model for a specific patient (also called enactment of the

model). Most existing clinical knowledge models have cre-
ated their own execution engine [17, 21]. But this has lead
to different engines capable of executing only one specific
model, and interaction between these engines is difficult if
not impossible. Moreover, these engines are all faced with
similar problems such as integration, persistence, scalabil-
ity, etc.

We present an execution architecture that allows the
combination of or even interaction between different pro-
cess models. Support for different knowledge models can
easily be plugged in, making it an open and extensible ar-
chitecture. This means that a clinical institution that wants
to add decision support to its environment is not forced to
select only one clinical knowledge model, but can choose
a set of decision support models that best suit their needs,
preventing vendor lock-in.

The description of some clinical knowledge in a certain
knowledge model is called a process. For example, clinical
protocols are expressed as workflow processes, and clini-
cal pathway processes are created for specifying the best
practice for patients with a particular diagnosis. A care
provider that wants to apply this knowledge to a specific pa-
tient should request the execution of such a process. At that
point, a process instance is created, containing all patient-
specific runtime information about the state of the patient in
that process.

When executing a process instance, the decision support
system can invoke external services to perform a specific
task. Typical examples are a recommendation to a care
provider to perform some clinical task, a notification, query-
ing for certain patient data, scheduling an appointment, etc.
Some work could have to be performed by a human actor,
while other might be executed automatically. A work item
instance is an abstract representation of such a unit of work
containing all information needed for executing the task.
This allows us to reuse the same processes in different clin-
ical settings. When integrating the decision support archi-
tecture into an existing runtime environment, implementers
must map these work items to invocations of existing ser-
vices.

Figure 5 shows the main components in the execution
environment architecture:

e The Process Manager handles the communication be-
tween a decision support requester and the decision
support engine. It offers an API for starting processes
for a specific patient and manipulating existing process
instances.

e The decision support system should be notified of
events that might influence the execution of (especially
long-running) process instances. The Event Manager
offers an API for signaling such events and makes sure
that all relevant process instances are notified.
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Figure 5. Architecture of the decision support
execution environment

e The decision support system is responsible for select-
ing tasks (work items) to be executed, and when to ex-
ecute these tasks, but it does not know how to execute
them. Whenever the decision support system requests
the execution of some work item, the Worklist Man-
ager makes sure the work is executed. It is responsible
for finding the actor or external service responsible for
executing the work, delegating the work, and notifying
the decision support system when the work has been
completed or aborted.

e The Processing Unit Manager is the component that
is responsible for actually applying the decision sup-
port knowledge encoded in processes. It is notified
of all changes in the environment and decides when
to execute process instances that might be influenced
by those changes (e.g. instantly or in batch at night).
For each of the supported clinical process models, a
processing unit must be plugged in, capable of in-
terpreting processes of the specific type. Whenever a
process instance must be reevaluated, the processing
unit must deduce the new state of the process instance
based on the previous state and on other external data,
using the clinical knowledge encoded in the process.
At the same time it can generate work item instances
that must be performed. (These are delegated to the
worklist manager.)

Processing units contain the actual logic that is needed
for executing a clinical knowledge model. In order to add
support for a particular knowledge model, a processing unit
must be implemented capable of interpreting that model.
The processing unit manager offers a pluggable architecture

where new processing units can be registered. The process-
ing unit is responsible for applying processes of a certain
knowledge model to patients, by modifying the state of the
process instance representing the state of the patient in a
process, and by requesting the execution of work item in-
stances if certain external services need to be invoked. The
architecture makes sure that the appropriate processing unit
is activated whenever necessary, that this unit has access to
the most up to date information and that the work items it
generates are executed by the appropriate services.

To allow inter-operability between different models and
sharing of clinical knowledge across institutions, all patient
data referenced in clinical processes must be defined using a
standardized patient data model that is coupled to standard
terminologies. We use the concept of a (simplified) virtual
medical record (VMR) [11] as a virtual repository contain-
ing all data necessary for decision support. When integrat-
ing the decision support architecture into an existing run-
time environment, implementers must map these concepts
to their local electronic medical records (EMR) representa-
tion and repositories.

Our architecture offers generic support for a lot of re-
quirements, so that implementers of a clinical knowledge
model can focus on defining the operational semantics of
their model and should not be concerned with the imple-
mentation details of requirements. We will not discuss all
supporting components in full detail. We limit this descrip-
tion to a summary of the architectural tactics that have been
selected and implemented to meet these requirements:

e Scalability: The number of patients treated by one
clinical institution can become very large and the
amount of clinical knowledge is ever growing. By
distributing all these patients and knowledge over dif-
ferent decision support systems, the clinical decision
support architecture remains scalable with respect to
the number or patients, the amount of patient data,
the amount of clinical knowledge, the number of care
providers requesting decision support, etc.

e Performance: To make sure that care providers do not
have to spend time waiting for decision support re-
sponses, the architecture embeds information caching,
parallel execution, asynchronous (non-blocking) com-
munication and reuse of previous results.

e Monitoring: The Admin API helps the administrator
in maintaining the decision support system. This in-
cludes configuration, inspecting or modifying the state
of existing process instances and work item instances,
retrieving performance measurements, etc. The API
offered to administrators is similar for all process mod-
els.



e Security: the architecture allows the application of
generic security solutions for problems like authenti-
cation of care providers requesting decision support,
authorization so that only care providers who have the
right to execute certain processes can do so, confiden-
tiality and integrity to protect the privacy of the patient.

e Integration: by integrating the architecture with exist-
ing data repositories and services, patient-specific ad-
vice can be provided at the point of care. Integration is
based on the use of a standardized patient data model
and terminology. In order to have fully automated de-
cision support, the decision support system must also
be notified of relevant events in the surrounding sys-
tems. The effort of integrating the architecture in an
existing runtime environment is reused across all clin-
ical knowledge models.

e Persistence: the current state of process instances is
stored persistently, so that the runtime state of a certain
patient in a process does not remain in memory if this
information is currently no longer needed, and to allow
recovery in case of failure. The architecture automat-
ically retrieves the last known state before evaluating
a process instance and persists the changes afterwards.
There is support for transactions so that a process in-
stance always remains in a consistent state.

A new process model can easily be included in our de-
cision support architecture by plugging in a new process-
ing unit that is capable of interpreting the model. Because
the architecture already solves a lot of non-functional re-
quirement, implementers of processing units should only be
concerned with defining the operational semantics of their
knowledge model. Different techniques could be used for
implementing such processing units, for example:

e The operational semantics of the process model could
be encoded using a standard (functional) programming
language.

e Implementers could use other technologies to aid in
the execution of their model. Typical examples are
mathematical models like graph theory and petri nets,
generic reasoning engines, etc.

e Light-weight versions of execution engines for exist-
ing knowledge models could be integrated and plugged
into our architecture.

In the next section, we present our approach to provide
developers of process models with an elegant implementa-
tion strategy to plug in support for their knowledge model.
In this approach, rules are used to describe the operational
semantics of a specific model, and a rule engine is used in-
side the processing unit to execute these rules (operational
semantics).
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Figure 6. Rule-based processing unit
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6 Rule-based processing unit

Most execution engines for existing clinical knowledge
models hard code the semantics of the process model into
the engine code. This is not a very natural way of defining
the operational semantics of a process model, and it limits
the extensibility and adaptability of the processing unit and
the process model itself.

We have created a rule-based processing unit that acts as
a template that implementers can use to plug in support for
their process model. This processing unit requires imple-
menters to specify the operational semantics of their model
using declarative rules. For each of the building blocks of-
fered by the model, one or more rules should specify how
that building block should be treated when executing pro-
cesses of that type. For example, when looking at the clin-
ical pathway model, rules are used to define what should
happen when episodes are started, when tasks are executed,
when patient goals are reached, etc. This is a more natural
way of implementing support for a processing unit since the
logic for executing a process is separated from other imple-
mentation issues.

A rule engine is embedded inside the rule-based process-
ing unit that will use these rules when executing processes
of that type. This means that implementers that want to
plug in support for their clinical knowledge model can do
so by encoding the semantics of their model using declar-
ative rules and by registering a rule-based processing unit
that will use these rules for executing their processes.

Figure 6 shows the architecture of the rule-based pro-
cessing unit. It contains a rule engine, consisting of a work-
ing memory that holds the current state of the process in-
stance and the patient and rules that describe how the pro-
cess should be executed. We use two types of rules: generic
and specific rules. Generic rules are valid for all processes
of a certain clinical knowledge model and describe how the
building blocks of that process model should be treated dur-
ing execution. For example, the parallel split used in the
workflow model to create concurrent branches is associated
with a generic rule that states that all outgoing branches
of the parallel split should be triggered when this node is



reached during execution.

Specific rules are used for evaluating expressions inside
processes. Clinical models often use an expression lan-
guage to reason about data or to express logical expressions.
For example, the clinical workflow model allows the use
of exclusive choice nodes when the care provider is con-
fronted with a set of alternatives and one and exactly one of
these alternatives should be selected. An expression could
be linked to each of the branches that specifies when that
specific branch should be selected. This expression should
be evaluated at runtime. GELLO [18] is an example of such
an expression language that allows the construction of stan-
dardized, platform-independent expressions. The rule en-
gine can be used to evaluate these expressions by creating
rule templates in which the expressions are inserted. When
arule constructed using these templates is evaluated, the ex-
pression inside the rule is automatically evaluated as well.
We call these rules specific rules because they are used to
evaluate expressions of one specific process. A Rules Gen-
erator is used to create a specific rule for each expression
that is encountered in a process. For example, one specific
rule is generated for each outgoing branch of an exclusive
choice, triggering that specific outgoing branch if the con-
straint linked to that branch is satisfied.

The set of rules that is created by combining the generic
and the specific rules of a process then contains all knowl-
edge that is needed to apply that process to patients. Based
on the current state of a patient in a process instance, (which
is inserted in the working memory of the rule engine,) the
rules are used to modify the state of the process instance
(if appropriate) and request the execution of work item in-
stances (if certain external services need to be invoked).
These external services could be used to create alerts, rec-
ommendations, etc. By creating these alerts and recommen-
dations, the clinical decision support can obviously aid care
providers in coordinating and delivering high quality care.

7 Prototype and evaluation

We have created a prototype that implements the Arri-
clides architecture as defined in sections 4, 5 and 6. Our
prototype allows clinical experts to define clinical knowl-
edge using the knowledge constructor that is then stored in
the repository and can later be used in the execution envi-
ronment to generate patient-specific advice. Although the
knowledge that is required for analyzing decision support
processes is already stored at runtime, we have not yet de-
veloped a clinical knowledge information manager capable
of analyzing this information.

To further demonstrate the capabilities of our prototype,
we first present two scenarios that are supported by the pro-
totype: Clinical experts could define validation rules that
are used to prevent medication errors by checking for un-

wanted medication interactions. Similarly, validation rules
could be used in combination with input forms to check the
validity of the data entered by care providers. Notifications
can be used to inform the care providers in case of any prob-
lems.

A second scenario describes the typical use of clinical
pathways and workflow: If a patient is diagnosed with a
particular disease, and a clinical pathway has been defined
for that disease, the patient can be assigned to that pathway.
The clinical decision support system then creates recom-
mendations that present the most optimal treatment based
on available patient data. These recommendations could
also include workflows to coordinate long-running nursing
protocols. Whenever new data about the patient is available,
the status of the clinical pathway is updated and the decision
support system checks whether new actions should be rec-
ommended. This process continues until the treatment ends
or the clinical pathway is no longer applicable.

In the next paragraphs, we discuss the implementation of
the knowledge constructor and the execution environment
in more detail and describe some measurements that were
performed to determine the performance characteristics of
our execution environment.

7.1 The knowledge constructor and repos-
itory

The knowledge constructor has been based on the
Eclipse Rich Client Platform [4], because it provides a plug-
gable architecture and offers support for creating different
types of advanced (graphical) editors. We extended the
Eclipse user interface with specialized views and editors for
creating clinical knowledge for each of the supported clini-
cal knowledge models.

The constructor can be divided into different parts: A
first set of editors is used to define and/or import terminol-
ogy used in the hospital as well as the structure of the patient
data. The patient data model is based on the HL7 Refer-
ence Information Model (RIM) [9]. We have extended this
model with the concept of a Recommendation to represent
suggestions made by the decision support system. Recom-
mendations can be accepted or rejected by care providers.

Clinical experts can then start defining clinical knowl-
edge using any of the provided knowledge models. The
flow charts for expressing clinical workflow or PROforma
processes are based on the Graphical Editing Framework
(GEF) [7] and include a drag-and-drop editor, validation
and a simulator. Validation rules can be created with a user-
friendly editor using a natural language format based on the
ILOG JRules [12] graphical editor. The clinical pathways
are constructed as time-task-matrices based on advanced
Java Swing tables.

The clinical knowledge created using the constructor is



stored as XML files in the file system. Knowledge can be
uploaded to a distributed clinical knowledge repository that
has been implemented using Java Enterprise Edition (Java
EE) on a JBoss application server and a MySQL database.

7.2 The execution environment

Two versions of the execution environment as presented
previously in Figure 5 have been implemented:

e A fully-functional, distributed implementation allows
decision support at server side. It supports the ex-
ecution of all the four knowledge models that have
been driving the Arriclides architecture. The execu-
tion environment is integrated with services that allow
the creation of patient-specific recommendations and
sending notifications to care providers. All patient data
needed during decision support evaluation can be ac-
cessed from a VMR. The distributed implementation
is based on Java EE and is deployed on a JBoss appli-
cation server. For persistence it uses Hibernate backed
up by a MySQL database.

e The light-weight implementation allows the use of re-
active decision support at client side: it can be used to
provide input validation and alert generation. It has ac-
cess to data at client side and can generate notifications
to the user. It uses Java Standard Edition (Java SE) and
must integrated with the client application.

Rule-based processing units have been created to sup-
port the execution of clinical workflow, clinical pathways,
validation rules and PROforma. Two different rule engines
were used during the implementation: Drools v2.4 [3], an
open-source rule engine in Java and ILOG JRules v4.6 [12],
a commercial Java rule engine.

7.3 Performance of the execution environ-
ment

In many occasions, decision support results should be
available as soon as possible. For example, the detection
of medication interactions should be signalled immediately
to prevent medication errors. The valuable time of care
providers should also not be wasted by requiring them to
actively wait for the decision support system.

Therefor, we have measured the response time of the ex-
ecution environment, as shown in Table 1. For this purpose,
we used the IV Protocol as presented in section 3.1 as an
example. We have determined the response time by mea-
suring how long it takes the workflow processing unit to
determine whether the IV should be reinserted or not after
providing the results of the IV check. This response time
can be divided into three distinct timings:

Table 1. Performance measurements

JRules | Drools
Time to load process 515ms | 1891 ms
Time to load data 12 ms 31 ms
Time to execute process | 15 ms 16 ms

e The time consumed for loading the process. This in-
cludes retrieving the process from the repository and
allowing the processing unit to parse it.

e The time consumed for loading the data needed dur-
ing the execution of the process instance. This data
includes the previous state of the process instance and
relevant patient data.

e The time consumed for executing the process. The
processing unit deduces the next state of the process
instance and generates work item instances represent-
ing the invocation of external services.

We have measured the performance using both the JRules
and Drools rule engine. Results show that loading the data
and executing the process only takes a few tens of millisec-
onds, while the time for loading the process is more around
the order of one second. But since process definitions usu-
ally are not changed that often, they can easily be cached so
the loading should only occur once, e.g. at the start-up of
the application. Therefor, the results of the decision support
system can be presented almost instantaneously.

8 Related work

A lot of research has already been performed in the area
of clinical knowledge models. We briefly compare our ap-
proach with the main alternative in the domain of integrat-
ing clinical decision support systems: creating a uniform
meta-model for all relevant clinical knowledge models. We
also sketch how our work compares to decision support sys-
tems for business process management, that also tackle the
problem of integrating an execution engine in an existing
runtime environment. Finally we refer to relevant standard-
ization efforts in the area of workflow management.

As introduced and summarized in section 3, a lot of dif-
ferent clinical knowledge models have already been defined
by different research groups. Comparison studies [14, 15]
have revealed that some of these models offer quite similar
building blocks. To allow the sharing of clinical knowledge
encoded in different formats across clinical institutions, D.
Wang has created GESDOR [20], an execution engine sup-
porting the execution of two different clinical knowledge
models, namely GLIF and a variant of PROforma. He does



so by mapping both models to a generalized guideline on-
tology. This strategy assumes that a generalized model can
be defined to support a diversity of useful (and often quite
different) knowledge models. Defining such a generalized
ontology was possible for Wang because the two models
that have been addressed share a similar structure. We be-
lieve that it is practically impossible to create and maintain
a generic ontology capable of expressing all different (yet
relevant) types of knowledge and decision support. Notice
that one has to manage the complexity of the generic on-
tology and the mapping of the different knowledge models
to this generic ontology. In fact, our architecture eliminates
the need for such a generic ontology.

In the area of business process management (BPM), pro-
cess engines have been used extensively to orchestrate the
interaction between different business actors. JBoss jJBPM -
a platform capable of executing workflow processes - of-
fers support for different workflow languages, like WS-
BPEL [10], jPDL, and Pageflow. They use the term Graph
Oriented Programming [8] to identify all languages based
on the execution of a graph. Our architecture extends this
approach by not only supporting graph-based workflow lan-
guages but many other types of knowledge models.

Within the context of standardization of interfaces, the
Workflow Management Coalition (WfMC) [22] has defined
a reference model and standardized interfaces for workflow
management systems. If different workflow products by
different vendors support these interfaces, these products
could easily be integrated and/or replaced, preventing ven-
dor lock-in. Our decision support architecture defines simi-
lar interfaces in order to create a standardized API for using
clinical decision support, regardless of which process model
is used to encode the clinical knowledge.

9 Conclusion

In this paper, we have discussed Arriclides, an open ar-
chitecture that integrates a variety of clinical decision sup-
port models. The overall architecture is similar to many
propositions in the domain, and it could act as a reference
architecture for clinical decision support systems. The ex-
ecution environment that lies at the heart of Arriclides is
an essential differentiator of our work, as it supports het-
erogeneity. We have implemented a prototype of Arriclides
and initial evaluations show acceptable performance. Scal-
ability can be achieved while preserving diversity in the un-
derpinning clinical decision support models.
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